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Abstract

The RPSP is a fast web service for detection of signal peptides in proteins. The method uses neural networks trained on known signal
peptides from the Swiss-Prot protein database. The web server works either on prokaryotic and eukaryotic proteins or without specifying an
organism type. The accuracy of the web server is similar to other available computational prediction web services, yet because of its speed
and portability the method can be easily applied to whole proteomes. The RPSP web server is available at http://rpsp.bioinfo.pl.
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1. Introduction

Signal peptides determine the destination of newly synthe-
sized proteins in a cell [10] and modulate cellular life, for
example, by controlling the entry of proteins to the secretory
pathway [6,8,10,27]. Signal peptides are short sequence frag-
ments that are cleaved off while the protein is transported via
a membrane. The application of regular expression search pro-
vides the simplest computational approach for an identification
of signal peptides, where regular expressions are constructed
from experimentally verified signal peptides in proteins [26].
The efficiency of prediction may be improved by applying con-
text-based rules and various logical filters [26]. The detection
of signal peptides can be also done by a weight matrix approach
[20]. In this approach cleavage sites are characterized by a set
of simple rules for recognition of differences between a signal
sequence and the mature exported protein [32,33,20]. Recently
more advanced methods were presented that make use of
various machine learning algorithms. The list includes neural
networks [22,23], support vector machines [31], hidden
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Markov models [21] and many others [4,5,7,11—16,18,20—
23,25,29—31,34]. Most of these methods correctly classify
sequences either as secretory or as non-secretory but do not
provide cleavage site assignment, and lack correct assignment
of the 5’-end of genes [28].

The most commonly used computational methods for
detection of signal peptides are the SignalP [4] and SPEPlip
[9]. The SignalP uses three neural networks combined with Hid-
den Markov Model in order to predict signal peptides in Gram-
positive and Gram-negative bacteria, and eukaryotes, whereas
SPEPIip applies two neural networks that are trained separately
on signal peptides from eukaryotes and prokaryotes. In this
manuscript we present similar approach, based on neural net-
works trained on the newest version of Swiss-Prot database
that is significantly faster than previously developed methods
and can be used in large-scale predictions of signal peptides.
The RPSP algorithm (rapid prediction of signal peptides) is pub-
licly available as a web service at http://rpsp.bioinfo.pl. Our
method focuses on the classical types of signal peptides
neglecting the non-classically secreted proteins [2,3]. Three
types of in silico prediction can be performed: for prokaryotic
sequences, eukaryotic sequences and without specifying the
organism type.
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2. Method

The machine learning algorithm is trained here on protein
sequences acquired from the Swiss-Prot database (release:
49.4) that is known to contain the signal peptides. Firstly all
Swiss-Prot entries with a keyword ‘SIGNAL’ in FT line
(20 863 entries) were extracted. Uncertain entries marked in
FT line as potential, probable or by similarity were removed
(4566 entries left), then archaeal and viral proteins were also re-
moved (4296 entries left). The resulting dataset was split into
two groups: eukaryotic sequences (3331 entries) and prokary-
otic ones (965 entries). In the case of eukaryotes all untypical
entries were discarded (organelle proteins, signal peptide se-
quences shorter than 15 and longer than 45 amino acids and
those with residues other than A, C, G, L, P, Q, S, Tat ‘—1’ po-
sition). In the case of prokaryotic sequences all lipoproteins,
signal peptide sequences shorter than 15 and longer than 50
amino acids, or those with residues other than A, G, S, T at
‘—1’ position were removed. Resulting datasets comprised
the positives used in the training, whereas the negatives were
prepared by extracting N-terminal parts (70-residue long
sequence fragments) of eukaryotic cytoplasmic and nuclear
proteins for eukaryotes and N-terminal parts of bacterial
cytoplasmic proteins for prokaryotes. The datasets were re-
duced later at 60% sequence identity for whole protein se-
quences using the CD-HIT clustering tool [17]. The selected
cut-off was selected as it provides both the best results [24]
and moderate memory requirements for training of neural net-
work. The resulting training datasets contain 1784 positives for
eukaryotes and 646 for prokaryotes, 987 eukaryotic negatives
from cytoplasm and 2265 from nucleus, and 2040 prokaryotic
negatives. In order to avoid the bias during training and testing
of the neural networks, the negative datasets were reduced ap-
proximately to the sizes of positive datasets. The neural net-
works were trained with six-fold cross-validation on three
training sets (separately for eukaryotes, prokaryotes and mixed)
[1]. All training datasets used to build the RPSP method are
available on the server web pages and can be used for training
of different types of machine learning algorithms such as sup-
port vector machine.

Because the cleavage site position is strongly correlated with
the amino acid composition of the signal peptide [22,23] the lo-
cal sequence information is sufficient as an input to the neural
network. Two neural networks with feed-forward, multi-layer
architecture and back-propagation learning algorithm are
used here. The first network determines if a given residue be-
longs to the signal peptide or not. A symmetric sliding window
with 27 amino acids for eukaryotic and mixed origin sequences,
and 19 amino acids for prokaryotic sequences is used as an in-
put for the neural network. We neglect differences between
Gram-negative and Gram-positive bacteria [22,23] as this infor-
mation is not readily available especially in bioinformatics
screening of large sequence datasets. The output layer is built
from a single neuron calculating the S-score of a prediction.
High score corresponds to higher probability that a given amino
acid belongs to a signal peptide, and low score indicates that the
amino acid is a part of a mature protein. The second neural

network recognizes the cleavage site. The input for this neural
network is given as an asymmetric sliding window with 24 res-
idues for prokaryotic/eukaryotic and 25 amino acids for mixed
origin sequences. The output layer (the single neuron) provides
the C-score of a prediction. This score describes the cleavage
site likelihood for each residue in the query sequence. This
score is higher at the cleavage site than for other parts of protein
sequence. The final discrimination between signal peptide and
non-signal peptide together with cleavage site prediction is
given by Y-score that combines both the previously mentioned
scores. This procedure is similar to SignalP [4] and SPEPIip [9]
algorithms and we use the same name convention of various
scores as in the SignalP and SPEPIlip papers. The final Y-score
is equal to: ¥; = v/C; x A4S;, where A,S; is the difference be-
tween the mean S-score for all d amino acids before and after
position i. The d value of 17 was taken from our benchmarking
results. The high values of C-score can be assigned to various
amino acids in the query sequence, whereas only the single res-
idue can be the true cleavage site. As a consequence, cleavage
site is predicted for the highest Y-score, which means that the
slope of the S-score is steep and significant C-score is found.
Therefore Y-score provides a better cleavage site prediction
than the raw C-score alone. In addition, the D-score is calcu-
lated as the arithmetic mean value of Y-score for position i
and mean value of S-score for all amino acids before it. This
score was shown previously [4] to be superior in discriminating
between secretory and non-secretory proteins in comparison
with the S-mean score used in previous approaches. Protein is
expected to contain a signal peptide in considered position 7 if
Y-score for this position is larger than 0.35 and D-score is larger
than 0.43 [4].

3. Results

We developed a rapid method for signal peptide detection
that can be applied for large-scale annotations of heterogeneous
sets of sequences and that does not require specifying their or-
igin. The performance of three neural networks trained sepa-
rately on prokaryotic, eukaryotic and those of mixed origin
sequences were conducted on independent test sets that were
not used during the learning procedure. Detailed benchmark re-
sults are shown in Table 1. The high efficiency of signal peptide
prediction even without specifying the organism of a protein is
a strong asset of our approach. The precision of the method op-
erating without distinguishing between prokaryotic and eukary-
otic proteins is not significantly lower than that using separate
neural networks trained either on eukaryotic or prokaryotic se-
quences. The overall classification error of cleavage site predic-
tion reaches 0.7 on heterogeneous data that contains both
prokaryotic and eukaryotic sequences, while the accuracy of
discrimination between signal peptides and non-signal peptides
is above 0.9. As one can see from Table 1 our results are com-
parable with those that can be obtained with other prediction
tools such as SignalP 3.0 [4] or SPEPIip [9].

Another crucial advantage of the RPSP is that the method is
very fast. For example, the analysis of 959 proteins takes about
2 s on a Linux machine with 2 GHz CPU and 512 MB RAM.
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Table 1
Results of neural network prediction on independent benchmarking datasets

Organism type Discrimination

Cleavage site SignalP2* cleavage site prediction

Precision Recall Accuracy Matthews correlation SignalP2* correlation

prediction [error] [ratio of correct predictions]

Eukaryotes 0.9 1.0 0.9 0.9
Prokaryotes 0.9 1.0 0.9 0.9
Eukaryotes and prokaryotes 0.9 1.0 0.9 0.8

0.9 0.8 0.7
0.8 0.8 0.7
- 0.7 -

# Results of SignalP2 performance on independent benchmarking dataset from Swiss-Prot version 29 with signal peptides and non-secretory, i.e. cytoplasmic or
nuclear, proteins after redundancy reduction. No results for both eukaryotes and prokaryotes (mixed organism type) are available.

The genome-wide signal peptide predictions run on Linux
machine with 2 GHz CPU and 512 MB RAM on two genomes
Plasmodium falciparum and Chlamydophila pneumoniae take,
respectively, 7 s and 3 s. For those two genomes SignalP 3.0
web server needs 263 s and 127 s, whereas SPEPlip web server
needs 203 s and 97 s. The availability of free local version with
the source code is the crucial advantage over the other previ-
ously developed algorithms that provide only web server inter-
faces. The web server technology has some inherent limits due
to internet architecture and technical design. The existing signal
peptide prediction servers cannot accept input of more than
around 1000 proteins, all have to contain less than certain limit
of residues per sequence (few thousands) and there is also the
limit for the number of residues in total. Additionally existing
servers have also the limit of few thousand lines in the input
file, and the number of jobs accepted from single IP internet ad-
dress. For example, in the case of both P. falciparum (5365 pro-
teins) and C. pneumoniae (1113 proteins) proteomes existing
servers return ‘““webserver error’, i.e., job is rejected due to ex-
ceeded sequence and memory limits. On the contrary, the RPSP
server is designed for high-throughput analyses and, in addi-
tion, the method is also available as a stand-alone program.
Therefore it can be compiled in much more effective way on
user workstation using standard C/C++4- compiler. User thus
can get easier and faster way to perform high-throughput
screening of large sets of proteins. Altogether, these make
RPSP the method of choice in high-throughput studies, such
as massive analyses of whole proteomes in the context of func-
tion prediction or detailed characterization of proteins.

4. Web server

The RPSP web server is publicly available at http:/
rpsp.bioinfo.pl. The RPSP accepts protein sequences in FASTA
format, with additional letter X for marking empty and un-
known positions in a sequence or positions that extend a se-
quence segment outside chain ends. User can input sequences
by submitting text file or by pasting the sequences in the text
box. Three types of prediction can be performed: for prokary-
otic sequences, eukaryotic sequences and without specifying
the organism type. The prediction results are sent to a user by
e-mail or provided on the server’s output web pages. The output
page contains, for each submitted protein, its name and detected
signal peptide with its sequence and length. In case when input
contains a single sequence, an annotated figure highlighting the
signal peptide and predicted secondary structure elements (by

PSIPRED [19]) is shown. For multiple FASTA records, annota-
tions for the first 50 sequences are only presented. A link to the
full RPSP prediction is provided for download and subsequent
automated parsing.

The RPSP source code in C programming language together
with LINUX precompiled binary can be freely downloaded
from http://bioinfo.pl/RPSP.tar.gz. Consequently, predictions
can be run locally on any typical workstation and can be used
in large-scale analyses. The training dataset, based on the
new version of the Swiss-Prot database, is freely available at
http://rpsp.bioinfo.pl/training/RPSPdata.tar.gz web page, and
can be used by users to train their own machine learning
algorithms.
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